organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-isonicotinamidobenzoate monohydrate

Yang Zhang and Xiao-Li Zhao*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China

Correspondence e-mail: xlzhao@chem.ecnu.edu.cn

Received 23 March 2010; accepted 25 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.102; data-to-parameter ratio = 12.8.

The title compound, $C_{14}H_{12}N_2O_3\cdot H_2O$, synthesized by the reaction of methyl 4-aminobenzoate with isonicotinoyl chloride hydrochloride, is relatively planar, with the pyridine ring being inclined by 7.46 (7)° to the benzene ring. In the crystal, the methyl 4-isonicotinamidobenzoate molecules are interlinked by water molecules *via* N-H···O, O-H···N and O-H···O hydrogen bonds, leading to the formation of a double-chain ribbon-like structure.

Related literature

For the synthesis of methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride, see: Margiotta *et al.* (2008). For the use of such ligands in coordination chemistry, see: Saeed *et al.* (2010); Kitagawa (2005). For standard bond distances, see: Allen *et al.* (1987).

Experimental

Curvetal data

$C_{14}H_{12}N_2O_3\cdot H_2O$	c = 10.9658 (5) Å
$M_r = 274.27$	$\alpha = 96.062 \ (1)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 90.896 \ (1)^{\circ}$
a = 6.8836 (3) Å	$\gamma = 95.854 \ (1)^{\circ}$
b = 8.8810 (4) Å	$V = 662.91 (5) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.952, T_{\rm max} = 0.973$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.102$ S = 1.062318 reflections 181 parameters

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1W^{i}$ $O1W-H1WA\cdotsN2^{ii}$ $O1W-H1WB\cdotsO2$	0.86	2.10	2.9014 (14)	155
	0.92	1.94	2.8510 (16)	169
	0.89	1.96	2.8385 (14)	172

T = 296 K

 $R_{\rm int} = 0.015$

3 restraints

 $\Delta \rho_{\text{max}} = 0.14 \text{ e} \text{ Å}$

 $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

 $0.48 \times 0.37 \times 0.27 \text{ mm}$

7689 measured reflections

2318 independent reflections

1968 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x, -y + 2, -z; (ii) x + 1, y + 1, z - 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the National Science Foundation of China (NSFC No. 20801018) and Shanghai Education Development Foundation for financial support (grant No. 2008 C G31).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2171).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S. (2005). J. Am. Chem. Soc. 129, 2607-2614.
- Margiotta, N., Capitelli, F., Ostuni, R. & Natile, G. (2008). J. Inorg. Biochem. 102. 2078–2086
- Saeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). *Acta Cryst.* E66, o19. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2010). E66, o1898 [doi:10.1107/S1600536810024979]

Methyl 4-isonicotinamidobenzoate monohydrate

Y. Zhang and X.-L. Zhao

Comment

The title compound was synthesized as a potential ligand for use in coordination chemistry (Saeed *et al.*, 2010; Kitagawa, 2005). It was synthesized via the reacton of methyl 4-benzoate with isonicotinoyl.HCl and contains both a coordination site [the N atom in the pyridyl ring], and a guest interaction site [the amide group].

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen *et al.*, 1987), and the molecule is relatively planar with the dihedral angle involving the pyridine and benezene rings being $7.46 (7)^{\circ}$.

In the crystal molecules are connected by hydrogen bonds, with the water molecule H-atoms serving as hydrogen-bond donors and the pyridyl nitrogen and ester oxygen atoms serving as acceptors (Fig. 2 and Table 1). At the same time, the amide nitrogen atom acts as a hydrogen-bond donor and the water oxygen atom as a hydrogen-bond acceptor. In this way a double stranded ribbon-like structure is formed with base vector [11-1].

Experimental

Methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride were synthesized using the literature methods (Margiotta *et al.*, 2008). Methy 4-aminobenzoate (3.02 g, 20 mmol), isonicotinoyl chloride hydrochloride (3.56 g, 20 mmol), and K₂CO₃ (5.52 g, 49 mmol) were mixed in acetone (100 ml). The mixture was kept at 343 K for 8 h with constant stirring. The white precipitate that formed was filtered off and washed with distilled water and then dried. Colourless block-like crystals, suitable for x-ray analysis, were obtained from a DMF-methanol solution (1:1; v:v) *via* vapour evaporation at room temperature after two weeks.

Refinement

The water molecule H-atoms were located in a difference Fourier map and were refined with $U_{iso}(H) = 1.5U_{eq}(Ow)$ and a restrained bond distance of 0.85 (2) Å. The remaining H-atoms were positioned geometrically and refined using a riding model: N-H = 0.86 Å, C—H = 0.93–0.96 Å with $U_{iso}(H) = k \times U_{eq}(N,C)$, where k = 1.2 for NH, CH and CH₂ H-atoms, and k = 1.5 for CH₃ H-atoms.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A view of the crystal packing of the title compound, showing one layer of molecules connected by O—H···N, O—H···O and N—H···O hydrogen bonds (dashed lines) [Symmetry codes: A = x+1, y+1, z-1; B = -x, -y+2, -z].

Methyl 4-isonicotinamidobenzoate monohydrate

Crystal	data
Crystat	uuuu

C ₁₄ H ₁₂ N ₂ O ₃ ·H ₂ O
$M_r = 274.27$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 6.8836(3) Å
<i>b</i> = 8.8810 (4) Å
c = 10.9658 (5) Å
$\alpha = 96.062 (1)^{\circ}$
$\beta = 90.896 (1)^{\circ}$
γ = 95.854 (1)°
$V = 662.91 (5) \text{ Å}^3$

Data collection

Bruker SMART 1K CCD area-detector diffractometer	2318 independent reflections
Radiation source: fine-focus sealed tube	1968 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.015$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
thin–slice ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 10$
$T_{\min} = 0.952, \ T_{\max} = 0.973$	$l = -13 \rightarrow 12$
7689 measured reflections	

Z = 2

F(000) = 288

 $\theta = 2.3-28.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.48 \times 0.37 \times 0.27 \text{ mm}$

 $D_{\rm x} = 1.374 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4652 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2 + 0.1234P]$ where $P = (F_o^2 + 2F_c^2)/3$
2318 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
181 parameters	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$

supplementary materials

3 restraints

$$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.02099 (15)	0.81758 (12)	0.39503 (10)	0.0431 (3)
H1A	-0.0956	0.7830	0.3698	0.052*
N2	-0.34705 (19)	0.52096 (14)	0.70330 (12)	0.0576 (3)
O3	0.61235 (16)	1.21607 (13)	0.08752 (10)	0.0623 (3)
O2	0.33143 (18)	1.24867 (15)	-0.00513 (11)	0.0772 (4)
01	0.23987 (15)	0.81573 (15)	0.55168 (10)	0.0713 (4)
O1W	0.30526 (15)	1.33795 (13)	-0.24537 (9)	0.0662 (3)
H1WA	0.4223	1.3964	-0.2516	0.099*
H1WB	0.3142	1.3192	-0.1677	0.099*
C1	0.7154 (3)	1.3157 (2)	0.00895 (17)	0.0722 (5)
H1B	0.8527	1.3251	0.0290	0.108*
H1C	0.6685	1.4142	0.0207	0.108*
H1D	0.6937	1.2740	-0.0751	0.108*
C2	0.4195 (2)	1.19167 (16)	0.07065 (12)	0.0507 (4)
C3	0.3244 (2)	1.08944 (15)	0.15573 (11)	0.0440 (3)
C4	0.1229 (2)	1.05719 (15)	0.14751 (12)	0.0480 (3)
H4A	0.0521	1.0974	0.0881	0.058*
C5	0.0271 (2)	0.96663 (15)	0.22619 (12)	0.0462 (3)
H5A	-0.1079	0.9452	0.2192	0.055*
C6	0.13107 (19)	0.90658 (14)	0.31652 (11)	0.0397 (3)
C7	0.3329 (2)	0.93699 (16)	0.32434 (12)	0.0467 (3)
H7A	0.4041	0.8963	0.3833	0.056*
C8	0.4280 (2)	1.02781 (16)	0.24441 (13)	0.0479 (3)
H8A	0.5633	1.0479	0.2501	0.057*
С9	0.07765 (19)	0.78029 (15)	0.50566 (12)	0.0442 (3)
C10	-0.07614 (19)	0.69056 (14)	0.57202 (11)	0.0408 (3)
C11	-0.2737 (2)	0.69375 (16)	0.55336 (12)	0.0483 (3)
H11A	-0.3201	0.7522	0.4959	0.058*
C12	-0.4020 (2)	0.60887 (18)	0.62121 (14)	0.0573 (4)
H12A	-0.5351	0.6136	0.6086	0.069*
C13	-0.1559 (2)	0.51992 (17)	0.72155 (14)	0.0566 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13A	-0.1137	0.4597	0.7790	0.068*
C14	-0.0171 (2)	0.60287 (16)	0.66023 (13)	0.0515 (4)
H14A	0.1151	0.6002	0.6778	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0379 (6)	0.0495 (6)	0.0418 (6)	-0.0031 (5)	-0.0043 (4)	0.0129 (5)
N2	0.0608 (8)	0.0573 (7)	0.0527 (7)	-0.0070 (6)	0.0120 (6)	0.0074 (6)
03	0.0606 (7)	0.0702 (7)	0.0580 (6)	-0.0041 (5)	0.0084 (5)	0.0254 (5)
02	0.0824 (9)	0.0973 (9)	0.0553 (7)	-0.0071 (7)	-0.0077 (6)	0.0408 (6)
01	0.0464 (6)	0.1138 (10)	0.0532 (6)	-0.0184 (6)	-0.0125 (5)	0.0349 (6)
O1W	0.0574 (6)	0.0887 (8)	0.0504 (6)	-0.0217 (6)	-0.0132 (5)	0.0287 (5)
C1	0.0783 (12)	0.0701 (11)	0.0688 (11)	-0.0096 (9)	0.0164 (9)	0.0245 (8)
C2	0.0648 (9)	0.0515 (8)	0.0351 (7)	-0.0004 (7)	0.0007 (6)	0.0076 (6)
C3	0.0542 (8)	0.0438 (7)	0.0331 (6)	0.0004 (6)	0.0002 (6)	0.0052 (5)
C4	0.0552 (8)	0.0509 (8)	0.0383 (7)	0.0027 (6)	-0.0103 (6)	0.0115 (6)
C5	0.0428 (7)	0.0516 (8)	0.0441 (7)	0.0010 (6)	-0.0069 (6)	0.0097 (6)
C6	0.0432 (7)	0.0388 (6)	0.0369 (6)	0.0018 (5)	-0.0015 (5)	0.0053 (5)
C7	0.0429 (7)	0.0545 (8)	0.0457 (7)	0.0061 (6)	-0.0028 (6)	0.0183 (6)
C8	0.0420 (7)	0.0565 (8)	0.0461 (7)	0.0018 (6)	0.0008 (6)	0.0134 (6)
C9	0.0410 (7)	0.0512 (7)	0.0401 (7)	0.0001 (6)	-0.0036 (5)	0.0090 (6)
C10	0.0428 (7)	0.0423 (7)	0.0365 (6)	0.0013 (5)	0.0017 (5)	0.0034 (5)
C11	0.0458 (8)	0.0580 (8)	0.0414 (7)	0.0048 (6)	-0.0005 (6)	0.0076 (6)
C12	0.0429 (8)	0.0741 (10)	0.0522 (8)	-0.0028 (7)	0.0048 (6)	0.0027 (7)
C13	0.0642 (10)	0.0536 (8)	0.0553 (9)	0.0076 (7)	0.0097 (7)	0.0193 (7)
C14	0.0473 (8)	0.0592 (8)	0.0513 (8)	0.0093 (6)	0.0046 (6)	0.0180(7)

Geometric parameters (Å, °)

N1—C9	1.3528 (17)	C4—C5	1.3721 (19)
N1—C6	1.4078 (16)	C4—H4A	0.9300
N1—H1A	0.8600	C5—C6	1.3946 (17)
N2-C12	1.327 (2)	C5—H5A	0.9300
N2—C13	1.329 (2)	C6—C7	1.3879 (18)
O3—C2	1.3296 (18)	C7—C8	1.3807 (19)
O3—C1	1.4422 (17)	C7—H7A	0.9300
O2—C2	1.2043 (18)	C8—H8A	0.9300
O1—C9	1.2156 (16)	C9—C10	1.5032 (18)
O1W—H1WA	0.9207	C10-C11	1.3758 (19)
O1W—H1WB	0.8877	C10—C14	1.3853 (19)
C1—H1B	0.9600	C11—C12	1.380 (2)
C1—H1C	0.9600	C11—H11A	0.9300
C1—H1D	0.9600	C12—H12A	0.9300
C2—O2	1.2043 (18)	C13—C14	1.375 (2)
C2—C3	1.4833 (19)	C13—H13A	0.9300
C3—C4	1.387 (2)	C14—H14A	0.9300
C3—C8	1.3871 (19)		

C9—N1—C6	127.41 (11)	C7—C6—C5	119.24 (12)
C9—N1—H1A	116.3	C7—C6—N1	124.08 (11)
C6—N1—H1A	116.3	C5—C6—N1	116.69 (11)
C12—N2—C13	116.54 (12)	C8—C7—C6	119.91 (12)
C2—O3—C1	116.54 (13)	С8—С7—Н7А	120.0
O2—O2—C2	0(10)	С6—С7—Н7А	120.0
H1WA—O1W—H1WB	100.2	C7—C8—C3	120.88 (13)
O3—C1—H1B	109.5	C7—C8—H8A	119.6
O3—C1—H1C	109.5	C3—C8—H8A	119.6
H1B—C1—H1C	109.5	O1—C9—N1	124.09 (12)
O3—C1—H1D	109.5	O1—C9—C10	120.49 (12)
H1B—C1—H1D	109.5	N1	115.42 (11)
H1C—C1—H1D	109.5	C11—C10—C14	117.50 (12)
02—C2—O2	0.00 (10)	C11—C10—C9	123.90 (12)
02—C2—O3	123.17 (13)	C14—C10—C9	118.56 (12)
02—C2—O3	123.17 (13)	C10-C11-C12	118.98 (13)
O2—C2—C3	123.63 (14)	C10—C11—H11A	120.5
O2—C2—C3	123.63 (14)	C12—C11—H11A	120.5
O3—C2—C3	113.20 (12)	N2-C12-C11	123.99 (14)
C4—C3—C8	118.92 (12)	N2—C12—H12A	118.0
C4—C3—C2	118.31 (12)	C11—C12—H12A	118.0
C8—C3—C2	122.76 (13)	N2-C13-C14	123.67 (14)
C5—C4—C3	120.67 (12)	N2—C13—H13A	118.2
C5—C4—H4A	119.7	C14—C13—H13A	118.2
C3—C4—H4A	119.7	C13—C14—C10	119.26 (13)
C4—C5—C6	120.37 (12)	C13—C14—H14A	120.4
C4—C5—H5A	119.8	C10—C14—H14A	120.4
С6—С5—Н5А	119.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!A$		
N1—H1A···O1W ⁱ	0.86	2.10	2.9014 (14)	155		
O1W—H1WA…N2 ⁱⁱ	0.92	1.94	2.8510 (16)	169		
O1W—H1WB···O2	0.89	1.96	2.8385 (14)	172		
Symmetry codes: (i) $-x$, $-y+2$, $-z$; (ii) $x+1$, $y+1$, $z-1$.						

Fig. 2